Catalog No: 31549, 31949
Expressed In: E. coli

Quantity: $100 \mu \mathrm{~g}$

Concentration: $1 \mu \mathrm{~g} / \mu \mathrm{l}$
Source: Human

Buffer Contents: Recombinant Histone H3.3 (G34R) is supplied in 50 mM Tris pH 8.0, $150 \mathrm{mM} \mathrm{NaCl}, 5 \%$ glycerol. Please refer to product insert upon arrival for lot-specific concentration.

Background: Histone H 3 is one of the core components of the nucleosome. The nucleosome is the smallest subunit of chromatin and consists of 146 base pairs of DNA wrapped around an octamer of core histone proteins (two each of $\mathrm{H} 2 \mathrm{~A}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 3$ and $\mathrm{H} 4)$. Histone H 1 is a linker protein, present at the interface between the nucleosome core and DNA entry/exit points. Histone H3.1 and Histone H3.3 are the two main Histone H 3 variants found in plants and animals. They are known to be important for gene regulation. Histone H 3.1 and H 3.3 have been shown to demonstrate unique genomic localization patterns thought to be associated with their specific functions in regulation of gene activity. Specifically, Histone H 3.1 localization is found to coincide with genomic regions containing chromatin repressive marks (H3K9me3, H3K27me3 and DNA methylation), whereas Histone H 3.3 primarily colocalizes with marks associated with gene activation (H3K4me3, H2BK120ub1, and RNA pol II occupancy). Deposition of the Histone H 3.1 variant into the nucleosome correlates with the canonical DNA synthesis-dependent deposition pathway, whereas Histone H3.3 primarily serves as the replacement Histone H 3 variant outside of S-phase, such as during gene transcription. Histone H3.3 point mutations (K27 and G34) are present in $1 / 3$ of pediatric glioblastomas. Up to 78% of diffuse intrinsic pontine gliomas (DIPGs) carries K27M and 36% of non-brainstem gliomas carries either K27M or G34R/V mutations. High-frequency mutation of histone H 3 to K36M in chondroblastomas and to G34W/L in giant cell tumors of bone, which are diseases of adolescents and young adults. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN.

Protein Details: Recombinant Histone H3.3 (G34R) was expressed in E. coli cells as full length protein (accession number: NP_002098.1) with a point mutation of Gly34Arg and has an observed molecular weight of 15.4 kDa . The recombinant histone H3.3 (G34R) is $>80 \%$ pure by SDS-PAGE.

Application Notes: Recombinant Histone H3.3 (G34R) is suitable for use as substrate for histone modification enzymes, or to generate chromatin in vitro.

Storage and Guarantee: Recombinant proteins in solution are temperature sensitive and must be stored at $-80^{\circ} \mathrm{C}$ to prevent degradation. Avoid repeated freeze/thaw cycles and keep on ice when not in storage. This product is guaranteed for 6 months from date of receipt.

This product is for research use only and is not for use in diagnostic procedures.

Recombinant Histone H3.3 (G34R) gel.

Histone H3.3 (G34R) was run on an 12% SDS-PAGE gel and stained with Coomassie Blue. The purity of Histone H3.3 (G34R) is $\geq 80 \%$

